
www.manaraa.com

An Oblivious Data Structure and its Applications toCryptographyDaniele MicciancioLaboratory for Computer ScienceMassachusetts Institute of Technologyemail: miccianc@theory.lcs.mit.eduJune 1996AbstractWe introduce the notion of oblivious data structure, motivated by the use of datastructures in cryptography. Informally, an oblivious data structure yields no knowledgeabout the sequence of operations that have been applied to it other than the �nal resultof the operations. In particular we de�ne oblivious 2-3 trees and update algorithms toinsert and delete sequences of contiguous leaves, in such a way that the only informationconveyed by an oblivious 2-3 tree is the set of values stored at its leaves. This propertyis achieved through the use of randomization by the update algorithms.We use oblivious 2-3 trees to solve the open problem of \private" incremental digitalsignatures raised by Bellare, Goldreich and Goldwasser (1995). A digital signaturesystem is incremental if a document for which a digital signature has been producedcan be edited and its digital signature can be e�ciently updated to reect the changesin the document. An incremental signature system is private if the digital signatureproduced by the system for the �nal version of a document that has undergone asequence of edit operations, does not yield any information on intermediate versions ofthe document.Keywords: Oblivious Data Structures, 2-3 Trees, Incremental Cryptography, Dig-ital Signatures
1

www.manaraa.com

1 IntroductionThe idea of incremental cryptography, as outlined in [1], is to take advantage of theknowledge of the result of applying a cryptographic transformation to a document D,to compute the cryptographic transformation of a di�erent but related document D0quicker than performing it from scratch.In particular, [1] proposes a digital signature method for which the signature al-gorithm is incremental. Namely, the cost of updating a signature when the documentis modi�ed by a basic edit operation (e.g. the insertion or deletion of a sequence ofblocks of text), is polynomial in a security parameter s (which is logarithmic in thesize of the document), rather than proportional to the size of the entire document.We shall call the digital signature of [1] a tree signature as it works essentially asfollows. The blocks of a document are stored at the leaves of a tree. Each internal nodecontains a (standard) digital signature of its children. For each basic edit operation(insertion or deletion of a sequence of blocks), the signature of the document can beupdated with changes that are local to a path from the root to the leaf just insertedor deleted. So, the cost of updating the tree signature of the document is proportionalto the height of the tree. The height of the tree is kept logarithmic in the number ofleaves through the use of 2-3 tree [5].From the security point of view, the tree signing algorithm achieves tamper proofsecurity (see section 4 for more details). An open problem remains: the privacy ofsignatures.1.1 The Privacy ProblemThe application that we have in mind is a text editor that maintains in the backgroundsigned copies of the documents being written using an incremental signing algorithm.The advantage of using such an editor is that when your document is �nished, a digitalsignature of it is immediately available.The signature of each version of a document is obtained as a function of a previousversion of the same document and the previous version's signature. Some informationon the way the document has been obtained as a sequence of edit operations, can becomputed from the signature of the �nal document obtained by the incremental signa-ture algorithm. Even though there is no secrecy about the �nal document, it may beundesirable for the signature to reveal information about intermediate documents thatled to the �nal one. For example, suppose you are drafting a sensitive and importantletter using the above mentioned text editor with incremental signature generation.When the �nal letter is complete, you certainly don't want the intermediate versionsto be revealed through the signature.In this paper we solve this problem. We do this by introducing oblivious 2-3 trees,an implementation of 2-3 trees [5] in which the operations are de�ned as probabilisticalgorithms and satisfy the intuitive property of hiding the sequence of operations thathas been applied to a tree. 2

www.manaraa.com

1.2 Oblivious 2-3 treeOur solution to the privacy problem consists of the de�nition of new insert and deleteoperations for 2-3 trees with the remarkable property that the topology of the tree ob-tained by applying any sequence of operations yields no information on the particularsequence of operations used1. We call this property obliviousness, and the resultingdata structure oblivious 2-3 tree. Insert and delete are de�ned as randomized algo-rithms: when a leaf is inserted or deleted, we make local changes to the topology ofthe tree based on the outcomes of a sequence of coin tosses. Essentially, we toss a coinfor each internal node to decide its degree. The crucial point is that when the treeundergoes a local modi�cation, we need to toss again the coins only for a small num-ber of nodes, in the neighborhood of a leaf-to-root path. Nevertheless, we can provethat the probability distribution on 2-3 trees induced by a sequence of operations, isindependent from the sequence of operations used.This data structure solves the private signature problem introduced in [1].Perhaps, more interestingly, oblivious 2-3 trees o�er advantages over other deter-ministic and probabilistic data structures, even from a purely algorithmic point ofview.Algorithmic improvements to standard 2-3 tree: The expected height of anoblivious 2-3 tree is log2:5 n, slightly improving the log2 n bound o�ered by deterministic2-3 trees.As far as the running time is concerned, we prove that the insert and delete op-erations have O(logn) cost. The probabilistic analysis of our operations on 2-3 treesis made only with respect to the coin tosses of the operation being executed, withoutany assumption on the input tree, the global sequence of operations or the coin tossesmade during the execution of operations in the past. This is in contrast with the useof randomization that is made in most probabilistic data structure (see section 1.3).Even in this \worst case" probabilistic analysis, we prove that the expected runningtime of the algorithms is O(logn), with negligible probability to deviate from the ex-pected value. Therefore the running times of the operations on oblivious 2-3 trees canbe bounded independently of each other.Applications in distributed environments: Bounding the running time ofthe operations independently of each other, is of fundamental importance in certainapplications. Consider a distributed environment in which the same data structure isaccessed by several users. It is conceivable that each user, although willing to accepta probabilistic estimate on the cost of the operations he performs, wants the expectedrunning time to be small with respect only to its own coin tosses. The possibility of therunning time cost of the operations performed by one user being strongly inuencedby those made by another one is undesirable. With our data structure the possibilityof a user being slowed down by the malicious behavior of another user accessing thesame data structure, is not present.1This is certainly not true for the usual insert and delete operations on 2-3 tree: for example, if a treeis built by inserting all leaves in order from left to right, all internal nodes (exception made for those alongthe rightmost path of the tree) will have degree two. 3

www.manaraa.com

1.3 Related work on Randomized Data StructuresThe idea of using randomization in performing tree operations has apparently appearedin the data structure literature before (see [4] and [3]) in order to improve on thealgorithmic aspects of the tree operations.Both randomized search trees ([4]) and skip lists ([3]) achieve O(logn) expectedrunning time for insert and delete operations. It is interesting how in these data struc-tures obliviousness (although not even de�ned) is achieved and used for the purposeof analyzing the running time of the algorithms.In randomized search trees and skip lists, the cost of an insert or delete operationessentially depends on the balance of the data structure. Randomization is used to keepthe data structure balanced with high probability. The balance of the data structure isindependent from the sequence of operations being applied, and in this sense the datastructure is oblivious. This property is used to prove that the expected running timefor single operation is O(logn).However, the expected running time behavior of randomized search trees and skiplists is di�erent from the one exhibited by our oblivious 2-3 trees. The running timeof the operations on randomized search trees and skip lists depends not only on thecoin tosses that are made during the operation being analyzed, but also on those madeduring the previous insertion and deletion operations. The expectation is computedwith respect to all coin tosses made since the creation of the data structure.Thus a malicious user can cause the data structure to become unbalanced andperform poorly, if the sequence of operations he executes on the data structure isnot independent from the coin tossed during the execution of the previous operations.Notice that oblivious 2-3 trees are not subject to this weakness because they have worstcase (over the inputs) O(logn) expected running time.We illustrate the \malicious user" problem on randomized search trees. This datastructure is de�ned in [4] as a rooted binary tree whose nodes have associated a keyand a priority such that the nodes form a search tree with respect to their keys, anda heap with respect to their priorities. Priorities are chosen at random, so that thetree is kept balanced with high probability. In [4] it is pointed out that in order tomaintain the tree probabilistically balanced, the priorities of the nodes must be kepthidden from the \user". In a distributed environment in which some users can bemalicious (as it is often the case in cryptographic applications), this is far from beinga realistic assumption because the priorities of the nodes can be detected by analyzingthe running time of the access operations. Note that a malicious user do not even needto bias its own coin tosses: knowing their outcomes is enough to create a very \non-random" and unbalanced tree by a polynomial number of updates. Similar remarksapply to skip lists.In conclusion, oblivious 2-3 tree is the �rst data structure that achieves oblivious-ness, not as a tool to prove other properties, but as an important property itself. Evenfrom a purely algorithmic point of view, oblivious 2-3 tree achieves better performancethan other data structures achieving obliviousness as a side e�ect proposed in the lit-erature, as oblivious 2-3 tree exhibits worst case (over the inputs) O(logn) expectedrunning time. 4

www.manaraa.com

1.4 OutlineThe rest of the paper is organized as follows. In section 2 we give some basic de�nitions.In section 3 oblivious 2-3 trees are de�ned and analyzed. In section 4 we show howoblivious 2-3 trees solve the privacy problem for incremental signature. Section 5concludes with some remarks on the general notion of oblivious data structure.2 Notation and TerminologyA 2-3 tree is a rooted tree in which all internal nodes have either two or three childrenand all leaves are at the same level. The leaves of a 2-3 tree store values taken from atotally ordered set of keys K. The keys stored at the leaves of a 2-3 tree are all distinctand appear in increasing order when the leaves are visited from left to right.In the representation of 2-3 trees that we will use, the nodes at each level of a treeare organized in linked lists to allow an easy traversal of the levels. Each internal noden has the following �elds:� a key n:key storing the minimum key of the subtree rooted at n,� an integer n:deg 2 f2; 3g storing the degree of node n,� a pointer n:child to the �rst child of n,� a pointer n:next to the next node at the same level.A new node with n:deg = d, n:child = c and n:next = n is created by the operationnew-node(d; c; n). The value of �eld n:key needs not to be speci�ed explicitly becausen:key = (n:child):key. We assume that each time the pointer n:child is changed,also the �eld n:key is suitably modi�ed. The ith successor of a node n is de�ned byn[0] = n, n[i + 1] = (n:next)[i]. For all internal nodes n such that n:next 6= NIL wehave n:child[n:deg] = n:next:child.A 2-3 forest is an ordered list of 2-3 trees all having the same height. IfN is a pointerto a node in a 2-3 tree, N can be thought as pointing to a node, pointing to a 2-3 tree(the subtree rooted atN), pointing to a list of nodes ([N [0]; N [1];N [2]; : : :]) or pointingto a forest (the list of trees rooted atN [0],N [1],: : :). All these di�erent sets of nodes aredenoted by Node(N), Tree(N), List(N) and Forest(N) respectively. length(N) denotesthe length of List(N): length(NIL) = 0, otherwise length(N) = 1 + length(N:next).3 Oblivious 2-3 treeIn this section we de�ne a set of update algorithms for 2-3 trees that are both e�cientand oblivious, as de�ned below. The operations we consider are insertion and deletionof a key. The algorithms implementing the operations, Insert(k,T) and Delete(k,T),are probabilistic and have expected running time O(logn) where the expectation istaken on the internal coin tosses of the algorithm only, and not on the possible valuesof k and T .De�nition 1 Let O be a set of operations that act over 2-3 trees, and S be a setof algorithms implementing them. The set of algorithms S is oblivious i� for anytwo sequences of operations p1 : : : pn and q1 : : : qm the following is true. If p1 : : : pn5

www.manaraa.com

BuildLevel(L):if length(L) = 1 then return Lif length(L) = 2 then return new-node0(2; L[0];NIL)if length(L) = 3 then return new-node0(3; L[0];NIL)if length(L) = 4 thenreturn new-node0(2; L[0]; new-node0(2; L[2];NIL))if length(L) � 5 thentoss a coin d 2R f2; 3greturn new-node(d; L[0];BuildLevel(L[d]))Figure 1: The BuildLevel Algorithmand q1 : : : qm generate trees storing the same set of leaves L, then the execution ofthe sequence of algorithms in S implementing p1 : : : pn and the execution of those im-plementing q1 : : : qm de�ne identical probability distributions over 2-3 trees with leavesL. In our case, the operations are the insertion and deletion of a key. The correspondingalgorithms, Insert(k,T) andDelete(k,T), are de�ned and proved oblivious in sections3.2 and 3.3. The running time is analyzed in section 3.4. We will prove obliviousnessby de�ning, for any set of keys L, a probability distribution �L over the set of treeswith leaves L. We then show that for any key k the probability distribution over thetrees with leaves L [fkg given by Insert(k; �L) coincides with �L[fkg. Analogously,the probability distribution over the trees with leaves Lnfkg de�ned by Delete(k; �L)is �Lnfkg.It follows that if a tree is built up using exclusively the two algorithms Insert(k,T)and Delete(k,T), the probability distribution de�ned by the �nal output of the algo-rithms executed, yield no information on the sequence of operations performed, otherthan the �nal set of leaves.3.1 The probability distributionThe probability distribution �L over the set of trees with leaves L, is de�ned by analgorithm BuildTree(L) that given an ordered list of leaves L returns a 2-3 tree withleaves L. The algorithm is probabilistic and induces a family of probability distributions�L(T) = Pr[BuildTree(L) = T]:We add to internal nodes a new �eld n:random storing a single bit. n:random isset to 1 i� the degree of node n has been randomly chosen between 2 and 3 by a coinip. Unless otherwise stated the �eld n:random is always set to 1. A new internal nodewith �eld random set to 0 is created by the operation new-node0(deg; child; next).The tree is built up level by level using the subroutine BuildLevel shown in �gure1. The list of nodes at level i is obtained traversing the list of nodes at level i+ 1 andgrouping them in groups of either two or three elements. The nodes in each group6

www.manaraa.com

BuildTree(L):if L is unordered then sort Lwhile length(L) > 1 doL BuildLevel(L)return (L)Figure 2: The BuildTree Algorithmbecome the children of a node n in the upper level. The degree of n is the size of theassociated group of nodes at level i+ 1, and is chosen uniformly at random between 2and 3, provided that level i+1 contains at least 5 nodes. If we are left with two, threeor four nodes at level i+ 1, there is only one way to group them in contiguous subsetsof size two and three. So, in this case no randomization is involved in the constructionof level i and the �eld random of node n is set to 0. Notice that if n:random = 0 thenn is one of the last two nodes of its level.The subroutine BuildLevel(N) takes as input a pointer N to a 2-3 forest. If Npoints to a forest with n trees, BuildLevel(N) return a forest of at most n=2 trees.The algorithm BuildTree, shown in �gure 2, takes a list of leaves L and returns a2-3 tree with leaves L. This is accomplished by repeatedly calling BuildLevel untilL is reduced to a single tree.3.2 InsertWe want to de�ne an insertion algorithm Insert(k; T) such that the probability distri-bution over the trees with leaves L [fkg de�ned by Insert(k; �L) is equal to �L[fkg.We �rst de�ne a subroutine Ins(k;N) which takes as input a key k to be inserted,and a pointer N to a 2-3 forest. The inputs to Ins(k;N) must satisfy the conditionN:key � k.Ins(k;N) inserts the key k in the forest pointed to by N and returns a key k0.Ins(k;N) visits and possibly modi�es the nodes of an initial sublist of List(N). Theexecution of Ins(k;N) may result in the insertion of a new node in List(N). The keyof the last visited node is returned: if Ins(k;N) returns the key k0, then all nodes inList(N) after the call with key greater than k0 are guaranteed to be as they were beforethe execution of Ins(k;N).ALGORITHM Ins(k,N):1. If N points to a leaf node, then insert the new key k in the ordered list pointedto by N and terminate with return value k.2. Advance the pointer N (N N:next) until either N:random = 0 or (N:next)has key greater than k.3. Initialize a pointer M to the �rst child of N (M N:child).4. Call recursively Ins(k;M) and store the returned value in k0.7

www.manaraa.com

Insert(k,T):f T:next = NIL and T:key = �1 gcall Ins(k; T)if (T:next = NIL) then return (T)otherwise return (new-node(0; T;NIL))Figure 3: The Insert Algorithm5. If no coin has been tossed for the node pointed to by N (N:random = 0), thenrun the algorithm BuildLevel onM . Replace the list of nodes pointed to by Nwith the result of BuildLevel(M) and terminate with return value +1.6. If the key of M is greater then k0 do(a) If the �rst child of N is M terminate with return value N:key.(b) Toss a coin d 2R f2; 3g.(c) If the �rst child of N is M [d] then insert, immediately before N , a newinternal node of degree d and with �rst child M . Terminate with returnvalue N:key.(d) otherwise, set the degree of N to d and go on.7. Set N:child to M . Advance M of N:deg positions (M M [N:deg]). AdvanceN of one position (N N:next) and go back to step 5.The Insert(k; T) algorithm, shown in �gure 3, calls Ins(k; T) as a subroutine. Tis assumed to point to a tree, that is T:next = NIL. To ensure that T:key < k, weassume that the tree contains a leaf with key �1. If the execution of Ins(k; T) resultsin the insertion of a new node at level 0, then a new root node with children T andT:next is created.A proof of the correctness of the algorithm is implicit in the proof of obliviousness.Proposition 1 For any set of leaves L and for any leaf k, the following equality holdsbetween probability distributions:Insert(k; �L)) = �L[fkgwhere �L is the probability distribution, over 2-3 trees storing the set of leaves L,generated by BuildTree(L).The proof of the above Proposition is based on the following Lemma. Let Insk(F)the probability distribution over 2-3 forests resulting from the execution of Ins(k; F).Lemma 1 For any 2-3 forest F with more than one tree and for any key k,BuildLevel(Insk(F)) = Insk(BuildLevel(F))is an equality between probability distributions over 2-3 forests.8

www.manaraa.com

Proof: (Sketch) Consider an execution of Ins(k;N) with N pointing to the result ofrunning BuildLevel(F). Clearly N does not point to a list of leaves, so Step 1 isskipped. Now observe that the execution of Step 2 only a�ects the running time of theAlgorithm. Therefore, we can assume that Step 2 is not executed and the pointer Mis initialized to the �rst node of F .So, the call to Ins(k;M) at step 4 generates a 2-3 forest with probability distributionInsk(F). The proof proceeds by computational induction, showing that the executionof Steps 5-7 is equivalent to the assignment N := BuildLevel(M). 2The proof of Proposition 1 easily follows from Lemma 1.3.3 DeleteThe delete algorithm is de�ned along the same lines as Insert. First a routine todelete a key from a 2-3 forest is de�ned.ALGORITHM Del(k,N):1. If N points to a leaf node, then delete the new key k in the ordered list pointedto by N and terminate with return value k.2. Advance the pointer N (N N:next) until either N:next:random equals 0 orN:next:key � k.3. Initialize a pointer M to the �rst child of N (M N:child).4. Call recursively Del(k;M) and store the returned value in k0.5. If N:next:random = 0, then run the algorithm BuildLevel on M . Replace thelist of nodes pointed to by N with the result returned by BuildLevel(M) andterminate with return value +1.6. If the key of M is greater then k0 do(a) If the �rst child of N is M terminate with return value N:key.(b) Toss a coin d 2R f2; 3g.(c) If the �rst child of N:next:next is M [d] then set N:child =M and N:deg = d.Remove the node N:next and return (N:key).(d) otherwise, set the degree of N to d and go on.7. Set N:child toM . Advance M of N:deg positions (M M [N:deg]). Advance Nof one position (N N:next) and go back to step 5.The Delete(k; T) Algorithm is shown in �gure 4. It is assumed that T points toa single tree (T:next = NIL) and the minimum key in T is strictly smaller than k. Asbefore, this last condition is ensured by having a leaf in the tree with key �1.The proof of correctness and obliviousness is analogous to that for the Insertalgorithm.Proposition 2 For any set of leaves L and for any leaf k, the following equality holdsbetween probability distributions: Delete(k; �L)) = �Lnfkg.9

www.manaraa.com

Delete(k,T):f T:next = NIL and T:key = �1 gcall Del(k; T)if (T:child:next = NIL) then return (T:child)otherwise return (T)Figure 4: The Delete Algorithm3.4 Running time AnalysisIn this section we prove that the expected running time of Insert(k; T) is O(h) whereh is the height of the tree T . Since the leaves in a 2-3 tree are all at the same level,this implies a O(logn) bound, where n is the number of leaves of T . The analysis ofthe Delete algorithm is analogous and yields similar results.Consider an execution of Algorithm Insert(k; T). The running time is proportionalto the number of nodes visited. We will give an estimate to this number. The Ins(k;N)procedure is called h times, once for each level of the tree T . Each call to Ins visits asequence of contiguous nodes, all at the same level. Let li the number of nodes visitedat level i and consider the corresponding call to Ins(k;N).It is easily seen that the number of nodes visited during the execution of step 2 (orstep 1 if N is a leaf) is at most 4.After that,M is initialized to the �rst child ofN and Ins(k;M) is called. Ins(k;M)visits li+1 nodes at level i + 1 and returns the key k0 of the last visited node. A newnode is visited at level i for each iteration of steps 5-7. Notice that at step 7 the pointerM is advanced of at least two positions. So, after at most (li+1=2 + 1) iterations Mpoints to a node with key greater than k0.For all subsequent iterations of steps 5-7 the execution of Ins(k;N) terminateswithin two iterations with probability at least 1=4: if N:child = M we stop immedi-ately; if N:child = M [2] or N:child = M [1] and N:deg = 2 we stop in one iterationwith probability 1=2 (when d = 2 and d = 3 respectively); �nally, if N:child = M [1]and N:deg = 3, the sequence of coin tosses d = 2, d = 3 make us stop in two moreiterations with probability 1=4.Therefore the number of nodes visited at level i can be bounded byli � 4 + 12 li+1 + 1 + 2Xiwhere Xi is a random variable with geometric distribution of parameter 1=4. The totalrunning time is given by Time = hXi=1 li � hXi=1(5 + li+12 + 2Xi)Subtracting Time=2 from both sides and multiplying by 2 we get the upper boundTime � 10h+ 4X , where X =Phi=1Xi is the sum of h independent random variables,all with geometric distribution of parameter 1=4. In particular, we have E[X] = 4h.10

www.manaraa.com

Proposition 3 The expected running time of algorithm Insert(k; T) and algorithmDelete(k; T) is O(h), where h is the height of the tree T . Moreover, the probabilityfor the running time to deviate from its expected value by more than � is exponentiallydecreasing both in � and in h.4 Incremental SignaturesIn this section we de�ne in more detail the private signature problem and show howour data structure solves it.De�nition 2 A signature scheme is speci�ed by a triple (G;S;V) of probabilistic poly-nomial time algorithms.� Algorithm G is called the key generator. G takes as input a security parameter 1s(i.e. s expressed in unary) and outputs a pair (KS; KV) of keys called the secretkey and the veri�cation key.� Algorithm S is called the signature algorithm. It takes as input a secret key KSand a message m and outputs a string S(KS; m) called digital signature of munder key KS.� Algorithm V is called the veri�cation algorithm. It takes as input the veri�cationkey KV , a message m and a string �, and tests whether � is a valid signature formessage m (i.e. V(KV ; m; �) = 1 i� � is a possible output of S(KS ; m)).LetM be a set of text modi�cation operations (e.g. M = finsert(b; i); delete(i)g,where insert(b; i) is the operation of inserting a new block b at position i of a textand delete(i) is the operation of deleting the ith block). If p1 : : : pn is a sequenceof such operations, p1 : : :pn[D] denotes the result of applying the operations p1 : : : pnsequentially to the initial document D.De�nition 3 Let (G;S;V) be a signature scheme, and let M be a set of text modi�-cation operations. An M-incremental signature system for (G;S;V) is an interactivemachine I operating as follows.� I is initialized with a pair of keys (KS ; KV), obtained by running G(1s).� In response to a create(D) command, with parameter an initial document D, Ireturns two strings � and �. � is called document identi�er and can be used tolater refer to the document. � is the current signature of document � and it canbe used to issue edit commands to I.� In response to a edit(�; �; p) command, with parameters a document identi�er�, the current signature � of document � and a text modi�cation operation p,I updates the current signature � to reect the application of operation p andreturns the new current signature �0 of document �.Furthermore, for any sequence of operations p1 : : :pn, if I receives the sequence ofcommands create(D); edit(�; �0; p1); : : : ; edit(�; �n�1; pn) (possibly interspersed withother commands not referring to document �) where (�; �0) is the value returned by Iin response to the request create(D) and for all i = 1; : : : ; n; �i is the value returnedby I in response to the request edit(�; �i�1; pi), then �n is a valid signature of thedocument p1 : : : pn[D], i.e. V(KV ; p1 : : : pn[D]; �n) = 1.11

www.manaraa.com

In practice, the signature � is not passed to and returned from the commands issuedto I. Rather, � resides in some form of memory support and is modi�ed in place byI. We made � an explicit parameter to the commands to emphasize that � residesexternally to I and a malicious user could alter the incrementable signature � beforeissuing a command to I in the attempt of breaking the system.We consider a user A interacting with I to have requested a signature of doc-ument D i� A issued to I a sequence of commands create(D0), edit(�; �0; p1),: : : , edit(�; �n�1; pn), (possibly interspersed with other commands not referring todocument �) such that � is the document identi�er returned by create(D0) andD = p1 : : :pn[D0].We say that A produces a forgery i� A, after interacting with I, outputs a validsignature for a document D whose signature has not been requested by A during theinteraction with I.The de�nition of tamper proof security follows.De�nition 4 An incremental signature system I is tamper proof secure i� for anyprobabilistic polynomial time algorithm A which may interact with I, the probabilitythat A produce a forgery is negligible with respect to s, i.e. it is less than 1=p(s) forany polynomial p and for all s large enough. The probability is computed with respectto the coin tosses of algorithm A and those of the system I (which include the cointosses used by the key generator G to produce the initialization keys (KS; KV)).De�nition 5 An incremental signature system I is private i� for all possible pairsof keys (KS; KV) obtained by running G(1s), for any initial document D and for anysequence of text modi�cation operations p1; : : : ; pn the following is true.If I is initialized with the keys (KS; KV), the probability distribution on signa-tures � obtained by issuing the sequence of commands create(D) (with answer (�; �)),edit(�; p1; �0) (with answer �1), : : : , edit(�; pn; �n�1) (with answer �) (possibly in-terspersed with other commands not referring to document �), is identical to the prob-ability distribution de�ned by S(KS; p1 : : :pn[D]), i.e. running the signature algorithmdirectly on the �nal document.Slightly di�erent, but equivalent, de�nitions are given in [1] where it is also de�nedan incremental signature system, called the tree scheme, that uses 2-3 tree to implementall edit operations in logarithmic time. The tree scheme is built on top of a standard(non-incremental) signature scheme (G; S; V) and achieves tamper proof security underthe assumption that (G; S; V) is secure under chosen message attack.We now show how to de�ne a similar system using oblivious 2-3 trees, meeting theadditional requirement of privacy of signatures. Our de�nition is essentially the sameas in [1], with ordinary 2-3 trees replaced by oblivious ones.Let (G; S; V) be an ordinary signature scheme. We de�ne a new signature scheme(G;S;V) on top of (G; S; V). The key generator G is G itself. The algorithms S and Vuse S and V as subroutines with the keys generated by G, and are de�ned as follows.Algorithm S on input key KS and document D, produces a 2-3 tree. Each noden of the tree contains an authentication tag n:tag and an integer n:size storing thenumber of leaves in the subtree rooted at n. (To avoid ambiguities, we will use theterm \tag-tree" to refer to the signatures produced by S, while the term \signature"will always refer to an ordinary signature produced by S.) The leaves of the tag-tree12

www.manaraa.com

produced by S correspond to the blocks of document D. The �eld n:size equals one ifn is a leaf, otherwise it is computed as the sum of the sizes of the children of n (n:size =Pn:deg�1i=0 n:child[i]:size). The authentication tag is computed as follows. If n is the ithleaf of the tree, then n:tag = S(KS; D[i]) where D[i] is the ith block of the document.If n is an internal node then n:tag = S(KS; (n:child[0]; : : : ; n:child[n:deg� 1]; n:size)).If n is the root, then n:tag = S(KS; (n:child[0]; : : : ; n:child[n:deg� 1]; n:size; root)),where root is a special symbol used to distinguish the tag-tree of a whole documentfrom a subtree associated to part of a document. The topology of the tree is de�nedusing the procedure BuildTree de�ned in section 3.The veri�cation algorithm V works in the obvious way. It takes as input key KV ,document D and a tag-tree �, and uses V to check that all tags of the nodes in � arevalid signatures of the appropriate strings, as de�ned by S.We can now de�ne an incremental signature system I for (G;S;V). The systemI is initialized with a pair of keys (KS; KV) obtained by running G, and operates asfollows.� In response to a create(D) command, I generates a fresh document identi�er �,associates with it an internal register R�, computes the tag-tree � = S(KS ; D),initializes R� to the contents of the tag �eld of the root of �, and returns the pair(�; �).� In response to an edit(�; �; insert(b; i)) command, I checks that the value inthe register R� is equal to the tag �eld of the root of �. If so, I inserts a leafwith tag equal to S(KS; b) in the tag-tree � at position i using the oblivious2-3 tree insertion algorithm modi�ed as follows. The �elds size of the nodesare used to locate where the new leaf must be inserted. Each time a new noden is accessed, a partial validity check is performed. The validity of node n ischecked by running the veri�cation algorithm V with parameters KV , n:tag andthe appropriate string as de�ned by S. The �eld n:size is also checked to beequal to Pn:deg�1i=0 n:child[i]:size. Any time a node is modi�ed, the �elds size andtag are recomputed.Then, the register R� is updated to contain the new tag of the root of �.� edit(�; �; delete(i)) commands are treated analogously.The above system meets all three requirements of being tamper proof secure, e�-cient and private.Theorem 1 If the signature scheme (G; S; V) is secure under chosen message attack,then the incremental signature scheme I described above is tamper proof secure.The proof of this theorem is essentially the same as that in [1].Theorem 2 All edit operations are performed by I in time logarithmic in the lengthof the document being signed.Proof: The running time of a document modi�cation operation is proportional to therunning time of the corresponding insert or delete tree operation. The theorem followsfrom proposition 3. 2 13

www.manaraa.com

Theorem 3 The incremental signature system I achieves privacy.Proof: It follows immediately from the obliviousness of the tree operations used andfrom the fact that all calls to algorithm S are made with independent coin tosses. 25 DiscussionWe have de�ned e�cient algorithms to insert and delete nodes in 2-3 trees, satisfyingthe property that if two sequences of operations produce trees that have the same set ofleaves, than the execution of the algorithms corresponding to the two sequences of op-erations produce identical probability distributions over 2-3 trees. We call the resultingdata structure oblivious 2-3 tree (supporting insertion and deletion operations).An e�cient incremental digital signature system is de�ned based on oblivious 2-3tree. The incremental signature system achieves tamper proof security and privacy,thus solving an open problem raised in in [1].Oblivious algorithms for other tree operations, such as split and merge of 2-3 trees,can be de�ned following essentially the same ideas used in the de�nition of obliviousinsert and delete. An incremental signature system which support cut and paste textmodi�cation operations can be easily de�ned using oblivious split and merge of 2-3trees, essentially in the same way we did here for insert and delete operations.It is clear that the de�nition of obliviousness for 2-3 tree, can be generalized toarbitrary data structures.De�nition 6 Consider two data structures (A;�A) and (B;�B) implementing thesame set of operations �. The operations fA in �A are deterministic algorithms. Theoperations fB in �B are probabilistic algorithms.Let � be a function from B to A such that for all operation f 2 � of arity n, and forany n-tuple B 2 Bn, we have �(fB(B)) = fA(�(B)), where fB(B) denotes any possibleoutput of fB on input B.We say that (B;�B) is an oblivious implementation of (A;�A) with respect to ,if is a probabilistic algorithm such that for all a 2 A, �((a)) = fag, and for alloperation f 2 � of arity n, and for any n-tuple A 2 An, (fA(A)) and fB((A))de�ne identical probability distributions on ��1(fA(A)).For example oblivious 2-3 trees are an oblivious implementation of the associatedsets of leaves, where the probabilistic function is given by BuildTree.We believe that the applicability of the notion of oblivious data structure extends farbeyond the particular problem solved here (privacy of incrementally generated digitalsignatures), in particular to the area of cryptography and cryptographic protocols.6 AcknowledgementsThe author is grateful to Sha� Goldwasser for suggesting the problem and for her helpand encouragement to write this paper. Thanks also to Oded Goldreich for usefuldiscussions. 14

www.manaraa.com

References[1] M. Bellare, O. Goldreich, S. Goldwasser Incremental Cryptography and Applica-tion to Virus Protection. Proc. of the 27th Ann. ACM Symp. on the Theory ofComputing, 1995. pp 45-56.[2] M. Bellare, O. Goldreich, S. Goldwasser Incremental Cryptography: The case ofHashing and Signing. Advances in cryptology. Proceedings of the 14th Ann. In-ternational Conference. pp 216-233. 1994 Springer-Verlag, LNCS 839, CRYPTO94.[3] W. Pugh Skip Lists: A Probabilistic Alternative to Balanced Trees.Univ. of Mary-land, Tech. Report CS-TR-2190, 1989.[4] C. R. Aragon, R. G. Seidel Randomized Search Trees. Proc. of the 30th Ann. IEEESymp. on Foundations of Computer Science, 1983. pp 540-545.[5] A. Aho, J. Hopcroft, J. Ullman The design and analysis of computer algorithms.Addison Wesley, 1974.

15

